

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Blender Addon

zpy comes with a Blender Addon to make it easier to design and create [sims](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/) within Blender. You can learn more about Blender Add-Ons [here](https://docs.blender.org/manual/en/latest/editors/preferences/addons.html).

Features

	
	Debug Locally:
	
	[Run simulations locally](https://zumolabs.github.io/zpy/zpy/tutorials/run_a_sim/) for debugging.

	Render a single frame from a [sim](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/).

	
	[Segmenting](https://zumolabs.github.io/zpy/zpy/tutorials/segmentation/):
	
	Individual objects or groups of objects as single instances or categories.

	Import categories from .txt or .json.

	
	Scripting:
	
	Get started quick with [script templates](https://zumolabs.github.io/zpy/zpy/tutorials/template/).

	
	Exporting:
	
	Export [sims](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/) for cloud usage through [WebApp](https://zumolabs.github.io/zpy/app/about/) or [CLI](https://zumolabs.github.io/zpy/cli/about/).

 # Install the Blender Addon

Once you have installed the zpy module into [Blender’s python](https://zumolabs.github.io/zpy/zpy/install/blender_python_path/), download the latest [zip](https://github.com/ZumoLabs/zpy/releases) (you want the one called zpy_addon-v*.zip). Then open up Blender. Navigate to Edit -> Preferences -> Add-ons. You should be able to install and enable the addon from there.

![Enabling the addon](https://github.com/ZumoLabs/zpy/raw/main/docs/assets/install_zpy.png)

Video Tutorial

You can watch this tutorial as a video on YouTube:

[![Loading the Addon](https://img.youtube.com/vi/xipj3jFsZyY/0.jpg)](https://www.youtube.com/watch?v=xipj3jFsZyY “Loading the Addon”)

 # Web app

The web app is available at app.zumolabs.ai. The app is used to visualize dataset, [sims](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/), and jobs on the backend and get insights on why your synthetic data is not giving you the desired performance.

Features

	Download datasets

	Visualize datasets

	View metadata for [sims](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/) and datasets

	Mange teams and data permissions

 # Create an Account

WebApp accounts are required in order to use the ZumoLabs cloud generation. To get started:

	Head to app.zumolabs.ai.

	Sign in with Google, or create an account using your preferred email address.

	Verify your email address.

	Start generating data and sims!

 # zpy cli

The zpy cli is a **C**ommand **L**ine **I**nterface to interact with datasets and [sims](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/) on the zumo labs backend. This CLI has much of the same functionality found in the [WebApp](https://zumolabs.github.io/zpy/app/about/), but allows developers to use command line instead of a GUI to interact with datasets and sims.

Usage

	[zpy config](basic.md) - Authenticate with backend.

	[zpy project](project.md) - Swap between projects.

	[zpy dataset](dataset.md) - Upload or generate datasets.

	[zpy sim](sim.md) - [sims](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/)

	[zpy job](job.md) - Run jobs on datasets to product output datasets.

	[zpy transform](transform.md) - Format datasets.

 #### Authenticate with the backend

`zpy login`

<p align=”center”>

</p>

Verify CLI configuration

`zpy config`

<p align=”center”>

</p>

Display help

`zpy help`

<p align=”center”>

</p>

Display zpy version

`zpy version`

<p align=”center”>

</p>

 #### List datasets

`zpy dataset list`

<p align=”center”>

</p>

Download dataset zip

`zpy dataset get <name> path/to/local`

<p align=”center”>

</p>

Upload dataset zip

`zpy dataset upload <name> path/to/dataset.zip`

<p align=”center”>

</p>

Generate images for dataset from sim

`zpy dataset generate <name> <sim_name> <num_frames> args..`

<p align=”center”>

</p>

 #### Add a backend environment to target

`zpy env add <name> <endpoint>`

<p align=”center”>

</p>

Swap to backend environment

`zpy env set <name>`

<p align=”center”>

</p>

 #### List jobs

`zpy job list`

<p align=”center”>

</p>

Create job

`zpy job create <name> <operation> -f <dataset_filter>`

<p align=”center”>

</p>

Download logs from job

`zpy job logs <name> path/to/local`

<p align=”center”>

</p>

 #### List accounts

`zpy account list`

<p align=”center”>

</p>

List projects

`zpy project list`

<p align=”center”>

</p>

Set current project

`zpy project set <uuid>`

<p align=”center”>

</p>

Create new project

`zpy project create <account_uuid> <name>`

<p align=”center”>

</p>

Clear current project

`zpy project clear`

<p align=”center”>

</p>

 #### List sims

`zpy sim list`

<p align=”center”>

</p>

Download sim zip

`zpy sim get <name> path/to/local`

<p align=”center”>

</p>

Upload sim zip

`zpy sim upload <name> path/to/sim.zip`

<p align=”center”>

</p>

Download logs from sim ingress

`zpy sim logs <name> path/to/local`

<p align=”center”>

</p>

 #### List transforms

`zpy transform list`

<p align=”center”>

</p>

Run transform on a dataset

`zpy transform dataset <dataset_name> <operation>`

<p align=”center”>

</p>

 # Python client

Overview

The zpy client enables you to generate and download synthetic datasets.

This API is in early access. If you’re interested in using it, email us at info@zumolabs.ai.

Quick start guide

Install

You can install zpy with pip:

`bash
pip install zpy-zumo
`

Generating your first dataset

```python
# Make sure you’re using the latest version of the zpy library:
#   pip install zpy-zumo –upgrade
import zpy.client as zpy

# We’ll provide your project id during on-boarding
project_uuid=”…”

# This is your temporary auth token. It can be found by visiting:
#     https://app.zumolabs.ai/settings/auth-token
#
# The auth token will expire when you log out of the web app
auth_token=”…”

zpy.init(project_uuid=project_uuid, auth_token=auth_token)

# The simulation (sim) is the packaged version of the blender assets and
# generations script.
#
# We’ll give you the sim for your specific project and share new sim names when we
# create new versions.
sim_name = “demo_sim_v1”

# A DatasetConfig defines what synthetic data you want generated.
#
# For now, there are no parameters to configure. But in the future, this will include
# sim specific parameters like: changing the cropping style or selecting which classes
# should be included in a dataset.
dataset_config = zpy.DatasetConfig(sim_name)

# The generate call will cause our backend to actually generate a dataset.
#
# There are a few known issues:
# * Takes ~5 minutes to provision and spin up machines for larger generation jobs >200
#   images
# * Each dataset needs a unique name, e.g. ‘dataset.01’. In the future, we may remove
#   the concept of dataset names. Instead datasets will only be specified by their
#   config.
# * Calls to generate for a config that has already been generated take longer than
#   they should. In the future, if the data has already been generated it will start
#   downloading immediately.
zpy.generate(‘dataset.01’, dataset_config, num_datapoints=50, materialize=True)
```


 # API reference

Caveat
This api is in early access and subject to change.

Details

::: zpy.client

 # Citation

If you use zpy in your research, we would appreciate the citation!

```bibtex
@article{zpy,


title={zpy: Synthetic data for Blender.},
author={Ponte, H. and Ponte, N. and Crowder, S.},
journal={GitHub. Note: https://github.com/ZumoLabs/zpy},
volume={1},
year={2021}





}




            

          

      

      

    

  

    
      
          
            
  # Code of Conduct

Zumo Labs is committed to providing a friendly, safe and welcoming environment for all, regardless of level of experience, gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, religion, nationality, or other traits or characteristics.

We ask that you contribute to maintaining a positive environment. We do not tolerate harassment of participants in any form. Participants asked to stop any harassing behavior are expected to comply immediately.

Examples of behavior that contributes to creating a positive environment include:


	Being kind and courteous to others


	Using welcoming and inclusive language


	Being respectful of differing viewpoints and experiences


	Collaborating with other community members


	Gracefully accepting constructive criticism


	Focusing on what is best for the community


	Showing empathy towards other community members




Examples of unacceptable behavior by participants include:


	The use of sexualized language or imagery and sexual attention or advances


	The use of inappropriate images, including in a community member’s avatar


	The use of inappropriate language, including in a community member’s nickname


	Any spamming, flaming, baiting, or other attention-stealing behavior


	Trolling, insulting/derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or electronic address, without explicit permission


	Discussing topics that are overly polarizing, sensitive, or incite arguments. This includes the discussion of polarizing political views, violence, suicide, and rape.


	Responding with “RTFM”, “just google it” or similar phrases in response to help requests


	Other conduct which could reasonably be considered inappropriate





Our Goal

The goal of this document is to set the overall tone for our community. This isn’t an exhaustive list of things you can and can’t do. Rather, take this document in the spirit in which it’s intended, and try to be your best self.

We value many things beyond technical expertise, including collaboration and supporting others within our community. Providing a positive experience for other community members can have a much more significant impact than simply providing the correct answer.



Scope

This Code of Conduct applies to all spaces managed by Zumo Labs. This includes, but is not limited to, the Discord server, our repositories on GitHub, the YouTube-channel, and meet-ups. In addition, violations of this code outside these spaces may affect a person’s ability to participate within them.

The ZPY Code of Conduct applies equally to all members of the community, including staff.



Attribution

This Code of Conduct is adapted from the [Python Discord Code of Conduct](https://pythondiscord.com/pages/code-of-conduct/) under a Creative Commons license.




            

          

      

      

    

  

    
      
          
            
  # Contribute

We welcome community contributions! Our goal is to democratize data creation by building a community of developers that make zpy better everyday.

Search through the [current issues](https://github.com/ZumoLabs/zpy/issues) or open your own.

# Projects

We use GitHub Projects to organize our tickets into boards:


	[Main](https://github.com/ZumoLabs/zpy/projects/5): Roadmap for the main python package component of zpy.


	[WebApp](https://github.com/ZumoLabs/zpy/projects/6): Roadmap for the WebApp component of zpy at app.zumolabs.ai


	[API & CLI](https://github.com/ZumoLabs/zpy/projects/8): Roadmap for the API & CLI component of zpy.


	[ML Experiments](https://github.com/ZumoLabs/zpy/projects/7): Roadmap for ML Experiments using zpy.


	[Blender Addon](https://github.com/ZumoLabs/zpy/projects/1): Roadmap for the Blender Addon component of zpy.






            

          

      

      

    

  

    
      
          
            
  Domain randomization is a popular technique when generating synthetic data. The key concept behind domain randomization is increasing the variance of certain data parameters in the training set beyond what is seen in the test set. These data parameters may include lighting, camera viewpoint, and asset materials. Models trained on a domain randomized synthetic dataset are more general and suffer less from the sim2real gap.

![How the increased variance of domain randomization decreases the sim2real gap.](https://github.com/ZumoLabs/zpy/raw/main/docs/assets/domain_randomization.png)



            

          

      

      

    

  

    
      
          
            
  # License

This release of zpy is under the GPLv3 license, the [same license used by Blender](https://www.blender.org/about/license/). TLDR: Its free, use it!



            

          

      

      

    

  

    
      
          
            
  # Synthetic Data Literature

Many papers have been written about synthetic data over the years. If academic papers aren’t your jam, we [publish articles](https://www.zumolabs.ai/blog) to explain synthetic data as simply as we can. Below are some key papers organized by …

… usecase:


	Robotics: [1](#ref1), [3](#ref3), [4](#ref4),


	Autonomous Vehicles: [5](#ref5), [8](#ref8), [9](#ref9), [13](#ref13),


	Humans: [2](#ref2), [7](#ref7),


	Climate: [11](#ref11),


	ML Theory: [6](#ref6),


	Overview: [10](#ref10),


	Frameworks: [12](#ref12),




… year:


	2016: [13](#ref13),


	2017: [2](#ref2), [3](#ref3), [6](#ref6),


	2018: [7](#ref7),


	2019: [1](#ref1), [4](#ref4), [8](#ref8), [10](#ref10),


	2020: [5](#ref5), [9](#ref9), [11](#ref11),


	2021: [12](#ref12),




TIP The abstracts are also included with the paper links, so a good way to use this document is to ctrl-F the key words relevant to your usecase.

# Papers

## [Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via Randomized-to-Canonical Adaptation Networks](https://arxiv.org/pdf/1812.07252.pdf) <a name=”ref1”></a>

Usecase Robotic Grasping

Year 2019

Abstract Real world data, especially in the domain of robotics, is notoriously costly to collect. One way to circumvent this can be to leverage the power of simulation to produce large amounts of labelled data. However, training models on simulated images does not readily transfer to realworld ones. Using domain adaptation methods to cross this “reality gap” requires a large amount of unlabelled realworld data, whilst domain randomization alone can waste modeling power. In this paper, we present Randomizedto-Canonical Adaptation Networks (RCANs), a novel approach to crossing the visual reality gap that uses no realworld data. Our method learns to translate randomized rendered images into their equivalent non-randomized, canonical versions. This in turn allows for real images to also be translated into canonical sim images. We demonstrate the effectiveness of this sim-to-real approach by training a vision-based closed-loop grasping reinforcement learning agent in simulation, and then transferring it to the real world to attain 70% zero-shot grasp success on unseen objects, a result that almost doubles the success of learning the same task directly on domain randomization alone. Additionally, by joint finetuning in the real-world with only 5,000 real-world grasps, our method achieves 91%, attaining comparable performance to a state-of-the-art system trained with 580,000 real-world grasps, resulting in a reduction of real-world data by more than 99%.

—

## [Learning from Simulated and Unsupervised Images through Adversarial Training](https://arxiv.org/pdf/1612.07828.pdf) <a name=”ref2”></a>

Usecase Human Gaze Estimation

Year 2017

Abstract With recent progress in graphics, it has become more tractable to train models on synthetic images, potentially avoiding the need for expensive annotations. However, learning from synthetic images may not achieve the desired performance due to a gap between synthetic and real image distributions. To reduce this gap, we propose Simulated+Unsupervised (S+U) learning, where the task is to learn a model to improve the realism of a simulator’s output using unlabeled real data, while preserving the annotation information from the simulator. We develop a method for S+U learning that uses an adversarial network similar to Generative Adversarial Networks (GANs), but with synthetic images as inputs instead of random vectors. We make several key modifications to the standard GAN algorithm to preserve annotations, avoid artifacts, and stabilize training: (i) a ‘self-regularization’ term, (ii) a local adversarial loss, and (iii) updating the discriminator using a history of refined images. We show that this enables generation of highly realistic images, which we demonstrate both qualitatively and with a user study. We quantitatively evaluate the generated images by training models for gaze estimation and hand pose estimation. We show a significant improvement over using synthetic images, and achieve state-of-the-art results on the MPIIGaze dataset without any labeled real data.

—

## [Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World](https://arxiv.org/pdf/1703.06907.pdf) <a name=”ref3”></a>

Usecase Robotic Grasping

Year 2017

Abstract Bridging the ‘reality gap’ that separates simulated robotics from experiments on hardware could accelerate robotic research through improved data availability. This paper explores domain randomization, a simple technique for training models on simulated images that transfer to real images by randomizing rendering in the simulator. With enough variability in the simulator, the real world may appear to the model as just another variation. We focus on the task of object localization, which is a stepping stone to general robotic manipulation skills. We find that it is possible to train a real-world object detector that is accurate to 1.5 cm and robust to distractors and partial occlusions using only data from a simulator with non-realistic random textures. To demonstrate the capabilities of our detectors, we show they can be used to perform grasping in a cluttered environment. To our knowledge, this is the first successful transfer of a deep neural network trained only on simulated RGB images (without pre-training on real images) to the real world for the purpose of robotic control.

—

## [Deep Drone Racing: From Simulation to Reality with Domain Randomization](https://arxiv.org/pdf/1905.09727.pdf) <a name=”ref4”></a>

Usecase Drone Racing

Year 2019

Abstract Dynamically changing environments, unreliable state estimation, and operation under severe resource constraints are fundamental challenges that limit the deployment of small autonomous drones. We address these challenges in the context of autonomous, vision-based drone racing in dynamic environments. A racing drone must traverse a track with possibly moving gates at high speed. We enable this functionality by combining the performance of a state-of-the-art planning and control system with the perceptual awareness of a convolutional neural network (CNN). The resulting modular system is both platform- and domain-independent: it is trained in simulation and deployed on a physical quadrotor without any fine-tuning. The abundance of simulated data, generated via domain randomization, makes our system robust to changes of illumination and gate appearance. To the best of our knowledge, our approach is the first to demonstrate zero-shot sim-to-real transfer on the task of agile drone flight. We extensively test the precision and robustness of our system, both in simulation and on a physical platform, and show significant improvements over the state of the art.

—
## [Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data](https://arxiv.org/pdf/1810.10093.pdf) <a name=”ref5”></a>

Usecase Autonomous Vehicles

Year 2020

Abstract  We present structured domain randomization (SDR), a variant of domain randomization (DR) that takes into account the structure and context of the scene. In contrast to DR, which places objects and distractors randomly according to a uniform probability distribution, SDR places objects and distractors randomly according to probability distributions that arise from the specific problem at hand. In this manner, SDRgenerated imagery enables the neural network to take the context around an object into consideration during detection. We demonstrate the power of SDR for the problem of 2D bounding box car detection, achieving competitive results on real data after training only on synthetic data. On the KITTI easy, moderate, and hard tasks, we show that SDR outperforms other approaches to generating synthetic data (VKITTI, Sim 200k, or DR), as well as real data collected in a different domain (BDD100K). Moreover, synthetic SDR data combined with real KITTI data outperforms real KITTI data alone.

—

## [Using Synthetic Data to Train Neural Networks is Model-Based Reasoning](https://arxiv.org/pdf/1703.00868.pdf) <a name=”ref6”></a>

Usecase ML Theory

Year 2017

Abstract We draw a formal connection between using synthetic training data to optimize neural network parameters and approximate, Bayesian, model-based reasoning. In particular, training a neural network using synthetic data can be viewed as learning a proposal distribution generator for approximate inference in the synthetic-data generative model. We demonstrate this connection in a recognition task where we develop a novel Captcha-breaking architecture and train it using synthetic data, demonstrating both state-of-the-art performance and a way of computing task-specific posterior uncertainty. Using a neural network trained this way, we also demonstrate successful breaking of real-world Captchas currently used by Facebook and Wikipedia. Reasoning from these empirical results and drawing connections with Bayesian modeling, we discuss the robustness of synthetic data results and suggest important considerations for ensuring good neural network generalization when training with synthetic data.

—

## [Learning from Synthetic Humans](https://arxiv.org/pdf/1701.01370.pdf) <a name=”ref7”></a>

Usecase Human Pose Detection

Year 2018

Abstract Estimating human pose, shape, and motion from images and videos are fundamental challenges with many applications. Recent advances in 2D human pose estimation use large amounts of manually-labeled training data for learning convolutional neural networks (CNNs). Such data is time consuming to acquire and difficult to extend. Moreover, manual labeling of 3D pose, depth and motion is impractical. In this work we present SURREAL (Synthetic hUmans foR REAL tasks): a new large-scale dataset with synthetically-generated but realistic images of people rendered from 3D sequences of human motion capture data. We generate more than 6 million frames together with ground truth pose, depth maps, and segmentation masks. We show that CNNs trained on our synthetic dataset allow for accurate human depth estimation and human part segmentation in real RGB images. Our results and the new dataset open up new possibilities for advancing person analysis using cheap and large-scale synthetic data.

—

## [Multi Modal Semantic Segmentation using Synthetic Data](https://arxiv.org/pdf/1910.13676.pdf) <a name=”ref8”></a>

Usecase Autonomous Vehicles

Year 2019

Abstract Semantic understanding of scenes in threedimensional space (3D) is a quintessential part of robotics oriented applications such as autonomous driving as it provides geometric cues such as size, orientation and true distance of separation to objects which are crucial for taking mission critical decisions. As a first step, in this work we investigate the possibility of semantically classifying different parts of a given scene in 3D by learning the underlying geometric context in addition to the texture cues BUT in the absence of labelled real-world datasets. To this end we generate a large number of synthetic scenes, their pixel-wise labels and corresponding 3D representations using CARLA software framework. We then build a deep neural network that learns underlying category specific 3D representation and texture cues from color information of the rendered synthetic scenes. Further on we apply the learned model on different real world datasets to evaluate its performance. Our preliminary investigation of results show that the neural network is able to learn the geometric context from synthetic scenes and effectively apply this knowledge to classify each point of a 3D representation of a scene in real-world.

—

## [Semantic Understanding of Foggy Scenes with Purely Synthetic Data](https://arxiv.org/pdf/1910.03997.pdf) <a name=”ref9”></a>

Usecase Autonomous Vehicles

Year 2020

Abstract This work addresses the problem of semantic scene understanding under foggy road conditions. Although marked progress has been made in semantic scene understanding over the recent years, it is mainly concentrated on clear weather outdoor scenes. Extending semantic segmentation methods to adverse weather conditions like fog is crucially important for outdoor applications such as self-driving cars. In this paper, we propose a novel method, which uses purely synthetic data to improve the performance on unseen realworld foggy scenes captured in the streets of Zurich and its surroundings. Our results highlight the potential and power of photo-realistic synthetic images for training and especially fine-tuning deep neural nets. Our contributions are threefold, 1) we created a purely synthetic, high-quality foggy dataset of 25,000 unique outdoor scenes, that we call Foggy Synscapes and plan to release publicly 2) we show that with this data we outperform previous approaches on real-world foggy test data 3) we show that a combination of our data and previously used data can even further improve the performance on real-world foggy data.

—

## [Synthetic Data for Deep Learning](https://arxiv.org/pdf/1909.11512.pdf) <a name=”ref10”></a>

Usecase Overview

Year 2019

Abstract Synthetic data is an increasingly popular tool for training deep learning models, especially in computer vision but also in other areas. In this work, we attempt to provide a comprehensive survey of the various directions in the development and application of synthetic data. First, we discuss synthetic datasets for basic computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, simulation environments for robotics, applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more); we also survey the work on improving synthetic data development and alternative ways to produce it such as GANs. Second, we discuss in detail the synthetic-to-real domain adaptation problem that inevitably arises in applications of synthetic data, including syntheticto-real refinement with GAN-based models and domain adaptation at the feature/model level without explicit data transformations. Third, we turn to privacy-related applications of synthetic data and review the work on generating synthetic datasets with differential privacy guarantees. We conclude by highlighting the most promising directions for further work in synthetic data studies.

—

## [Learning color space adaptation from synthetic to real images of cirrus clouds](https://arxiv.org/pdf/1810.10286v2.pdf) <a name=”ref11”></a>

Usecase Cloud Detection

Year 2020

Abstract Cloud segmentation plays a crucial role in image analysis for climate modeling. Manually labeling the training data for cloud segmentation is time-consuming and error-prone. We explore to train segmentation networks with synthetic data due to the natural acquisition of pixel-level labels. Nevertheless, the domain gap between synthetic and real images significantly degrades the performance of the trained model. We propose a color space adaptation method to bridge the gap, by training a color-sensitive generator and discriminator to adapt synthetic data to real images in color space. Instead of transforming images by general convolutional kernels, we adopt a set of closed-form operations to make color-space adjustments while preserving the labels. We also construct a synthetic-to-real cirrus cloud dataset SynCloud and demonstrate the adaptation efficacy on the semantic segmentation task of cirrus clouds. With our adapted synthetic data for training the semantic segmentation, we achieve an improvement of 6:59% when applied to real images, superior to alternative methods.

—

## [UnrealROX+: An Improved Tool for Acquiring Synthetic Data from Virtual 3D Environments](https://arxiv.org/pdf/2104.11776v1.pdf) <a name=”ref12”></a>

Usecase Framework

Year 2021

Abstract Synthetic data generation has become essential in last years for feeding data-driven algorithms, which surpassed traditional techniques performance in almost every computer vision problem. Gathering and labelling the amount of data needed for these data-hungry models in the real world may become unfeasible and error-prone, while synthetic data give us the possibility of generating huge amounts of data with pixel-perfect annotations. However, most synthetic datasets lack from enough realism in their rendered images. In that context UnrealROX generation tool was presented in 2019, allowing to generate highly realistic data, at high resolutions and framerates, with an efficient pipeline based on Unreal Engine, a cutting-edge videogame engine. UnrealROX enabled robotic vision researchers to generate realistic and visually plausible data with full ground truth for a wide variety of problems such as class and instance semantic segmentation, object detection, depth estimation, visual grasping, and navigation. Nevertheless, its workflow was very tied to generate image sequences from a robotic on-board camera, making hard to generate data for other purposes. In this work, we present UnrealROX+, an improved version of UnrealROX where its decoupled and easy-to-use data acquisition system allows to quickly design and generate data in a much more flexible and customizable way. Moreover, it is packaged as an Unreal plug-in, which makes it more comfortable to use with already existing Unreal projects, and it also includes new features such as generating albedo or a Python API for interacting with the virtual environment from Deep Learning frameworks.

—

## [The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes](arxivlink) <a name=”ref13”></a>

Usecase Autonomous Vehicles

Year 2016

Abstract Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. Recent revolutionary results of deep convolutional neural networks (DCNNs) foreshadow the advent of reliable classifiers to perform such visual tasks. However, DCNNs require learning of many parameters from raw images; thus, having a sufficient amount of diverse images with class annotations is needed. These annotations are obtained via cumbersome, human labour which is particularly challenging for semantic segmentation since pixel-level annotations are required. In this paper, we propose to use a virtual world to automatically generate realistic synthetic images with pixel-level annotations. Then, we address the question of how useful such data can be for semantic segmentation – in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic collection of diverse urban images, named SYNTHIA, with automatically generated class annotations. We use SYNTHIA in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments with DCNNs that show how the inclusion of SYNTHIA in the training stage significantly improves performance on the semantic segmentation task.

—

## [Title](arxivlink) <a name=”ref”></a>

Usecase

Year

Abstract

—

## [Title](arxivlink) <a name=”ref”></a>

Usecase

Year

Abstract

—

## [Title](arxivlink) <a name=”ref”></a>

Usecase

Year

Abstract

—

## [Title](arxivlink) <a name=”ref”></a>

Usecase

Year

Abstract

—

## [Title](arxivlink) <a name=”ref”></a>

Usecase

Year

Abstract

—

## [Title](arxivlink) <a name=”ref”></a>

Usecase

Year

Abstract

—



            

          

      

      

    

  

    
      
          
            
  Synthetic data is data that is created as opposed to collected. Synthetic data can be used in any of the flavors of Machine Learning (natural language, computer vision, tabular data).



            

          

      

      

    

  

    
      
          
            
  So why should you use synthetic data? Well, synthetic data is …

### … quicker to iterate.

Synthetic data makes it easy to change the annotation style, or add an additional label which can be used as an additional training loss for the model. It also makes it easy to generate more examples of a specific edge case that may be causing issues in production. Synthetic data generation and iteration should be easy, and used in concert with adjustments to the model in order to achieve one’s goals.

### … virtually infinite.

Modern machine learning requires larger and larger datasets with synthetic data you can scale a dataset to the required size to train high-performant models.

### … perfectly labeled.

At Zumo Labs, many of our incoming customers have a common pain point: labeled training data is presenting itself as a significant bottleneck. How is it that data wrangling (that is, sourcing labeled data and managing the training data pipeline) can take up to 80% of AI project time by some estimates.

### … free of privacy risks and biases.

Traditionally the problem has been that compiling useful data sets requires infringing on people’s personal information, but guaranteeing privacy means either smaller or lower quality data sets, or stripping them of information to the point they are no longer useful.



            

          

      

      

    

  

    
      
          
            
  
	First release of zpy!


	MVP for CLI


	MVP for Blender Addon






            

          

      

      

    

  

    
      
          
            
  Features:


	Random material function


	Lighting Randomization function




Fixes:


	Image and annotation filename changes


	Bugfixes and improvements to CLI and Addon




Workflow:


	Documentation now lives on a dedicated site: https://zumolabs.github.io/zpy/


	Removed sphynx documentation


	Code linting through GitHub Actions






            

          

      

      

    

  

    
      
          
            
  Features:


	Added support for Blender 2.93.


	Added initial support for payment accounts and projects for better grouping of related objects. All zpy create
calls will now require a project namespace to be set via zpy project set.


	Added more informative error messages for known API errors (HTTP code 400).


	Added more informative print of filtered data sets before the confirmation message when doing zpy create job.




Fixes:


	Standardized column widths for zpy list calls to prevent clipping of UUIDs and dates.






            

          

      

      

    

  

    
      
          
            
  Features


	cli now does zpy object action instead of zpy action object


	api rework around transforms, jobs, datasets




API


	new API for ragnarok (zumolabs backend)


	collapse datasets to /api/v1/datasets


	add a generate call to /api/v1/datasets/<id>/generate


	datasets now have files as child objects /api/v1/datasets/<id>/files


	transforms added to convert between formats


	will now reused SimRuns on new generates where possible


	dataset names are unique across projects




UI


	now focused on sims and datasets


	project now used for scoping






            

          

      

      

    

  

    
      
          
            
  # Abstract

zpy is a python package that makes synthetic data easy, by simplifying the process of creating simulations, or [sims](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/). The zpy module contains multiple pieces:


	A [Blender Addon](../../addon/about) for creating and debugging [sims](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/) inside the Blender UI.


	A [CLI](../../cli/about/) for things like uploading [sims](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/) and generating datasets.


	A [WebApp](../../app/about/) for a GUI version of the API and CLI.


	A [Python client](../../client_api/about/) for generating synthetic datasets.






            

          

      

      

    

  

    
      
          
            
  # Package

The package [sim](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/) spawns packages on a floor and takes images from a varying camera viewpoint. Boxes are individually [segmented](https://zumolabs.github.io/zpy/zpy/tutorials/segmentation/), and the resulting dataset is used for object detection.

![Example synthetic images from package sim.](https://github.com/ZumoLabs/zpy/raw/main/docs/assets/package_sim_boxes.png)

## Results

We trained a CNN on synthetic data produced by this sim. Below are images showing predictions from this network:

![Results from model trained on package sim dataset.](https://github.com/ZumoLabs/zpy/raw/main/docs/assets/package_sim_results.png)

## Blog

You can find the full blog post for this project [here](https://www.zumolabs.ai/post/synthetic-data-package-detection).

## Code

The code for this example can be found [here](https://github.com/ZumoLabs/zpy/tree/main/examples/package).



            

          

      

      

    

  

    
      
          
            
  # Suzanne Code-Along: Part 1

Welcome to the first zpy tutorial! In this tutorial we will introduce the following concepts:


	Create a Blender sim


	Script the sim with python and zpy


	Generate synthetic data




## Code

The code for this example can be found [here](https://github.com/ZumoLabs/zpy/tree/main/examples/suzanne)

## Video

You can watch this tutorial as a [video on YouTube](https://youtu.be/py3mv70s82M).



            

          

      

      

    

  

    
      
          
            
  # Suzanne Code-Along: Part 2

If you are new we recommend [Part 1 of this tutorial](https://github.com/ZumoLabs/zpy/tree/main/examples/suzanne). In this tutorial we will introduce the following concepts:


	Logging


	Gin configuration


	Object jittering


	Depth images




## Code

The code for this example can be found [here](https://github.com/ZumoLabs/zpy/tree/main/examples/suzanne_2)

## Video

You can watch this tutorial as a [video on YouTube](https://youtu.be/wGTe2jJF0nE).



            

          

      

      

    

  

    
      
          
            
  # Suzanne Code-Along: Part 3

If you are new we recommend [Part 1 of this tutorial](https://github.com/ZumoLabs/zpy/tree/main/examples/suzanne). In this tutorial we will introduce the following concepts:


	Material jittering


	HDRI Backgrounds


	HSV randomization




## Code

The code for this example can be found [here](https://github.com/ZumoLabs/zpy/tree/main/examples/suzanne_3)

## Video

You can watch this tutorial as a [video on YouTube](https://youtu.be/plbbdRMJwHk).



            

          

      

      

    

  

    
      
          
            
  # Raspberry Pi (rpi)

The rpi [sim](https://zumolabs.github.io/zpy/zpy/tutorials/what_is_a_sim/) takes images from a varying camera viewpoint of a raspberry pi board in the middle of the scene. Sub-components of the rpi are individually [segmented](https://zumolabs.github.io/zpy/zpy/tutorials/segmentation/), and the resulting dataset is used for object detection or segmentation. This sim makes use of [Domain Randomization](https://zumolabs.github.io/zpy/overview/domain_randomization/).

![Example synthetic images from rpi sim.](https://github.com/ZumoLabs/zpy/raw/main/docs/assets/rpi_sim_synthetic.png)

![Example synthetic images from rpi sim.](https://github.com/ZumoLabs/zpy/raw/main/docs/assets/rpi_sim_dr.png)

## Blog

You can find the full blog post for this project [here](https://www.zumolabs.ai/post/training-ai-with-cgi).

## Code

The code for this example can be found [here](https://github.com/ZumoLabs/zpy/tree/main/examples/rpi)



            

          

      

      

    

  

    
      
          
            
  # Blender’s Python Path

Blender comes with it’s own Python, which is bundled with the 3D program. When installing python dependencies, such as ‘zpy’ a common mistake is to install them on the system python rather than Blender’s python.

More information on the install paths for Blender on various OS can be found in [Blender’s path documentation](https://docs.blender.org/manual/en/latest/advanced/blender_directory_layout.html)

### Linux

If you are running Blender directly from the install folder, you can find the python and pip executables in the blender-2.93.0-linux64/2.93/python/bin/ folder.

### Windows

On Windows, Blender’s python path can be found in the program files directory C:Program FilesBlender FoundationBlender 2.932.93pythonbin



            

          

      

      

    

  

    
      
          
            
  # Install Developer Environment on Linux

First clone the zpy repository:

`
mkdir -p $HOME/zumolabs && cd $HOME/zumolabs
git clone https://github.com/ZumoLabs/zpy.git zpy
`

Set the following environment variables:

`
export ZPY_SRC_PATH="$HOME/zumolabs/zpy"
export BLENDER_VERSION="2.93"
export BLENDER_VERSION_FULL="2.93.0"
export BLENDER_PATH="$HOME/blender-${BLENDER_VERSION_FULL}-linux-x64/${BLENDER_VERSION}"
export BLENDER_LIB_PY="${BLENDER_PATH}/python/lib/python3.9"
export BLENDER_BIN_PY="${BLENDER_PATH}/python/bin/python3.9"
export BLENDER_BIN_PIP="${BLENDER_PATH}/python/bin/pip3"
`

NOTE The BLENDER_PATH variable might change depending on where you downloaded your Blender. Change the path accordingly.

Install additional Python dependencies using Blender Python’s pip:

`
${BLENDER_BIN_PY} -m ensurepip
${BLENDER_BIN_PIP} install --upgrade pip
${BLENDER_BIN_PIP} install -r ${ZPY_SRC_PATH}/requirements.txt
`

If you are setting up a development environment it will be easier to symlink the zpy pip module directly into the Blender python library. This can be achieved with something like:

`
ln -s ${ZPY_SRC_PATH}/zpy ${BLENDER_LIB_PY}/site-packages/
mkdir -p ~/.config/blender/${BLENDER_VERSION}/scripts/addons
ln -s ${ZPY_SRC_PATH}/zpy_addon ~/.config/blender/${BLENDER_VERSION}/scripts/addons/zpy_addon
`



            

          

      

      

    

  

    
      
          
            
  # Install using pip

You can install zpy with pip:

`
pip install zpy-zumo
`

Note that [Blender has it’s own python](https://zumolabs.github.io/zpy/zpy/install/blender_python_path/), seperate from your system/venv/conda python. You will have to install it into both.



            

          

      

      

    

  

    
      
          
            
  # Install using script

We provide a install script for linux-subsystems (macos/linux).

`
$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/ZumoLabs/zpy/main/install.sh)"
`

Set these environment variables for specific versions:

`
export BLENDER_VERSION
export BLENDER_VERSION_FULL
export ZPY_VERSION
`



            

          

      

      

    

  

    
      
          
            
  # Install Developer Environment on Windows

These instructions use GitBash terminal, make sure to run as administrator!

First clone the zpy repository:

`
mkdir -p $HOME/zumolabs && cd $HOME/zumolabs
git clone https://github.com/ZumoLabs/zpy.git zpy
`

Set the following environment variables:

`
export ZPY_SRC_PATH="$HOME/zumolabs/zpy"
export BLENDER_VERSION="2.93"
export BLENDER_PATH="/c/Program\ Files/Blender\ Foundation/Blender\ ${BLENDER_VERSION}/${BLENDER_VERSION}"
export BLENDER_BIN_PY="${BLENDER_PATH}/python/bin/python.exe"
export BLENDER_BIN_PIP="${BLENDER_PATH}/python/bin/pip3"
`

If you are setting up a development environment it will be easier to symlink the zpy pip module directly into the Blender python library. This can be achieved with something like:

`
ln -s ${ZPY_SRC_PATH}/zpy ${BLENDER_PATH}/python/lib/
ln -s ${ZPY_SRC_PATH}/zpy_addon ${BLENDER_PATH}/scripts/addons
`

Install the dependencies
`
${BLENDER_BIN_PY} -m ensurepip
${BLENDER_BIN_PY} -m pip install --upgrade pip
${BLENDER_BIN_PY} -m pip install -r ${ZPY_SRC_PATH}/requirements.txt
`



            

          

      

      

    

  

    
      
          
            
  # Saving Depth Images

Depth images are single-channel images that indicate how far each pixel is from the camera.

## Video

You can watch this tutorial as a video on YouTube:

[![Depth Images](http://img.youtube.com/vi/G4Wa9aQSlOw/0.jpg)](http://www.youtube.com/watch?v=G4Wa9aQSlOw “Depth Images”)



            

          

      

      

    

  

    
      
          
            
  # Random HDRI Backgrounds

An HDRI is an asset which contains an image (360 sphere) along with lighting information. These are used as backgrounds in sims.

## Video

You can watch this tutorial as a video on YouTube:

[![Random HDRI Backgrounds](http://img.youtube.com/vi/QzJ6Y3jwr4w/0.jpg)](http://www.youtube.com/watch?v=QzJ6Y3jwr4w “Random HDRI Backgrounds”)



            

          

      

      

    

  

    
      
          
            
  # Jittering Materials

Materials are properties of 3D assets that determine their appearance when rendered. Jittering materials is the process of procedurally randomizing materials during runtime. Material jittering is a form of [Domain Randomization](https://zumolabs.github.io/zpy/overview/domain_randomization/).

## Video

You can watch this tutorial as a video on YouTube:

[![Jittering Materials](http://img.youtube.com/vi/WbarQmJ9qlY/0.jpg)](http://www.youtube.com/watch?v=WbarQmJ9qlY “Jittering Materials”)



            

          

      

      

    

  

    
      
          
            
  # Jittering Object Pose

Object pose is the position and rotation of an object in 3D space. Jittering object pose is the process of procedurally randomizing the position of an object (or set of objects) during runtime. Pose jittering is a form of [Domain Randomization](https://zumolabs.github.io/zpy/overview/domain_randomization/).

## Video

You can watch this tutorial as a video on YouTube:

[![Jittering Object Pose](http://img.youtube.com/vi/4Pe9B4auE1M/0.jpg)](http://www.youtube.com/watch?v=4Pe9B4auE1M “Jittering Object Pose”)



            

          

      

      

    

  

    
      
          
            
  # Run a Sim

Running a simulation can be done inside the Blender UI by clicking the zpy_addon panel button or Blender’s “script run” button.

## Video

You can watch this tutorial as a video on YouTube:

[![Run a Sim](http://img.youtube.com/vi/1_-6Vb2s10Y/0.jpg)](http://www.youtube.com/watch?v=1_-6Vb2s10Y “Run a Sim”)



            

          

      

      

    

  

    
      
          
            
  # Script Writing Guide

This guide gives you pointers and tips for writing a zpy run script. It is not meant to completely cover every single instance, but these things should be similar or the same over all sims.

## Blender File Setup

In terms of actually setting the file up, you don’t need a strict Collection Hierarchy, because it’s so much easier to write the code and then vary the structure of the *.blend file as you change things over a project’s lifecycle. Put like objects with like objects, for example: lights can be named and put in a collection with other lights that need similar functions enacted upon them. Collections and objects should be named with clarity in mind. Anyone should be able to discern what is in the sim by looking at the named objects.

## Imports

Imports are flexible and should be added as needed, in general every run script should have the following imports:

`
import bpy
import zpy
import logging
`

## Logging

Use the zpy logger object, which uses Python’s logging module

```
log = logging.getLogger(‘zpy’)

log.info(‘This is an info log’)
log.debug(‘This is a debug log’)
```

You can set the log levels as such:

`
zpy.logging.set_log_levels('debug')
`

## Decorators

These decorators on the run function have different purposes, @gin.configurable(‘run’) allows you to configure run function kwargs with gin. @zpy.blender.save_and_revert will save and revert the *.blend file every time you run it, allowing for local debugging.

## Run Kwargs

The keyword arguments (kwargs) for the run function will be exposed to the end user. Figure out which configs are most useful for your project so you can toggle and change values when generating in the cloud. An example of run kwargs:

```
def run(

random_floor_tex: bool = True,
jitter_mesh: bool = False,
jitter_scale: bool = False,
jitter_material: bool = False,
use_distractors: bool = True,

):

Seed

Set the random seed to have repeatably random behavior.

`
zpy.blender.set_seed(seed=43)
`

Saving data

Saver objects allow us to store all the metadata and annotations for the data we’re generating. You can create one with this call:

```
saver = zpy.saver_image.ImageSaver(


description=’description’,






)

## Creating Segmentation Colors

Create a segmentation color for each category and segment any objects:

```
category_A_segmentation_color = zpy.color.random_color(output_style=’frgb’)

	saver.add_category(
	name=’category_A’,
color=category_A_segmentation_color,

)

	zpy.objects.segment(‘object_name’,
	color=category_A_segmentation_color, as_category=True, as_single=True)


```

## Saving Pose

Save and restore the position of objects in the sim before each step.

```
zpy.objects.save_pose(‘Camera’)

	for frame in zpy.blender.step():
	zpy.objects.restore_pose(‘Camera’)


```

## Lighting

Lighting can be added to a ILLUMINATION collection, inside the World Set up.
Save lighting as a list, or iterate over the lighting using the bpy.data.Lighting type, this means the actual lighting within the scene can be changed or refactored without changing the script. If at all possible, do not reference objects by name, add them to the list and then manipulate that way.

```
lighting = []
for obj in zpy.objects.for_obj_in_collections([

bpy.data.collections[‘ILLUMINATION’]

]):
	lighting.append(obj)


```

## The Loop

Use frame as the iterator variable

```
Setup things
for frame in zpy.blender.step():

Do things


```

## Objects

Restore pose of objects if needed. Then jitter. Jitter the mesh (slighty tweaks the points of the mesh), jitter the scale, jitter the rotation, jitter the position of the object. Always use ‘if’ logic to be able to turn the jitter on and off in the kwargs.
Example:

Following the logic of trying to work on things in lists for flexibility rather than naming specific objects, putting objects that need similar operations performed on them into Collections is useful. If all the objects you’re using are Distractors that need to be randomly distributed around a zone, put them in the same Collection. Another option provided by Blender is the ability to filter by name. This allows us to create new objects or copy existing objects and then as long as the appropriate string is in their name, they’ll work without changing the script. The last way of referring to objects without using their name is with a Type. If we want to change all the lighting for example, we could use: for obj in bpy.data.light: to get all the lights.

## Materials

Jitter materials. There are three main types of material jitter, moving the material around a little, picking an entire random texture and randomly changing the material properties of a shader. Again, use IF logic to be able to switch these effects on and off with a bool.

## Object Distribution and Spawning

To place items in a space, we can use a spawning algorithm written in python, which will vary depending on the needs of the sim. Another way to get native spawning inside of Blender is to use Geometry Nodes. This workflow isn’t perfect, but it can save some time trying to figure out our own spawning methods.


	Add a new Geometry Node System with a Point Distribute and Point Instance Node.


	Randomize the locations of objects or objects within a Collection by linking seed value to frame.


	Turn off the Render Flag of the Spawner.


	Use zpy.select to select Spawner.


	Use “Make Instances Real” to create separate instances, then make each object a single user.


	Move the object to a separate Collection to isolate them.


	Loop through spawned objects to segment them as individual objects.


	Use if obj.name to apply category segments.


	Randomize the objects further as desired.


	Delete spawned instances of an object.




A lot of these ending commands will be the same regardless of what sim you’re working on, as they involve saving and output the images, which is similar between most sims.

# Rendering

To render out images, first decide on names for the images.

`
rgb_image_name = zpy.files.make_rgb_image_name(frame)
iseg_image_name = zpy.files.make_iseg_image_name(frame)
`

This call will actually render the images to file.

```
zpy.render.render(

rgb_path=saver.output_dir / rgb_image_name,
iseg_path=saver.output_dir / iseg_image_name,
width=image_width,
height=image_height,

)

Then add images to saver:

```
saver.add_image(


name=rgb_image_name,
style=’default’,
output_path=saver.output_dir / rgb_image_name,
frame=frame,
width=image_width,
height=image_height,




)
saver.add_image(


name=iseg_image_name,
style=’segmentation’,
output_path=saver.output_dir / iseg_image_name,
frame=frame,
width=image_width,
height=image_height,






)

# Annotations

After working to randomize the scene, we need to add annotations to the scene. We have found it’s easier to use name to filter through objects, but type or collection is a valid way of adding annotations.

Example of using name to add a bounding box annotation:

```
if ‘box.’ in obj.name:

	saver.add_annotation(
	image=rgb_image_name,
seg_image=iseg_image_name,
seg_color=tuple(obj.seg.instance_color),
category=obj.seg.category_name,

)


```

Writing out annotations with a populated saver object:

`
zpy.output_zumo.OutputZUMO(saver).output_annotations()
zpy.output_coco.OutputCOCO(saver).output_annotations()
`




            

          

      

      

    

  

    
      
          
            
  # Segmentation Images

Segmentation images mask out different objects in the image such that neural networks can train on the image.

## Video

You can watch this tutorial as a video on YouTube:

[![Segmentation Images](http://img.youtube.com/vi/NxFrY3EcIMA/0.jpg)](http://www.youtube.com/watch?v=NxFrY3EcIMA “Segmentation Images”)



            

          

      

      

    

  

    
      
          
            
  # Using Script Templates

Script templates in Blender are an easy way to start writing your script without having to write boiler plate.

## Video

You can watch this tutorial as a video on YouTube:

[![Script Templates](http://img.youtube.com/vi/ywaEhKGBUK0/0.jpg)](http://www.youtube.com/watch?v=ywaEhKGBUK0 “Script Templates”)



            

          

      

      

    

  

    
      
          
            
  # What is a Sim?

A simulation, also known as “sim”, is a scriptable 3D environment that is created using the zpy tools and Blender. A sim have the following principal components:


	run.py - The main script executed at runtime which creates and controls the 3D environment.


	config.gin - An optional configuration file which allows custom configuration at runtime.


	main.blend - The primary blenderfile which contains the run script.




## Template Sim

We provide some template simulations as examples and for getting started quickly:


	[Package](https://zumolabs.github.io/zpy/zpy/example/package/): Detection and segmentation of packages/boxes


	[RPI](https://zumolabs.github.io/zpy/zpy/example/rpi/): Detection and segmentation of Raspberry Pi components


	[Suzanne](https://zumolabs.github.io/zpy/zpy/example/part1/): Detection and segmentation of Suzanne monkey heads






            

          

      

      

    

  _static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/file.png





